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Discussion (research) 197

"TO BLOCK OR COVARY A CONCOMITANT VARIABLE:
WHICH IS MORE POWERFUL?"

The most widely used procedures to harness the power of
a concomitant variable are block designs and ANCOVA. The
decisions on whether to block or covary and how many blocks to be
used if blocking is selected are often based on rules of thumb
with little empirical support. The purpose of this study is to
provide a scientific foundation on which to base such decisions.

Monte Carlo generated data were analyzed using one-way
ANOVA; two-block, four-block, and eight-block block designs; and
ANCOVA. Resulting empirical powers were entered into a repeated
measures four-way factorial design with three factors
representing different experimental conditions and one factor
representing the five procedures being compared.

The results indicated that the correlation coefficient
between the concomitant and dependent variables was the critical
factor to influence the choice. One-way ANOVA was the best
choice when there was no relationship, blocking was preferred
when the correlation was low, and ANCOVA achieved the highest
power when the correlation was high. Block designs and ANCOVA
became more powerful and the optimal number of blocks increased
as the correlation coefficient, the number of treatments, and the
number of subjects per treatment increased.
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TO BLOCK OR COVARY A CONCOMITANT VARIABLE:

WHICH IS MORE POWERFUL?

INTRODUCTION

Educational experiments often involve assigning students to treatments. Traditional one-way analysis

of variance can be used to analyze the differences among treatments. Howeve!, differences among

students, such as, gender, socio-economic status, and level of ability, often mask or obscure the effects of

a treatment (Kennedy & Bush, 1985; Kirk, 1982). Nuisance variation due to such differences can be

extracted from the error variance. By controlling the concomitant (nuisance) variable, researchers often

reduce the background noise, increase the precision, and enhance the statistical power of a design (Bonett,

.1982; Keppel, 1991; Maxwell & Delaney, 1984). The most widely used procedures to harness the power of

a concomitant variable are block designs and the analysis of covariance.

Statement of the Problem

Evidence suggests that approximately 70% of published research in the behavioral sciences uses

analysis of variance techniques (Glass & Hopkins, 1984). Many of these studies are analyses of either block

or covariance designs. Whether to block or covary and how many blocks to be used if a block design is

chosen become important questions and the answers may differ according to the experimental conditions.

The purpose of this study is to determine which procedure should be used given a set of experimental

conditions.

Sionificance of the Study

The decisions on whether to block or covary and how many blocks to be used if a block design is

selected are often based on rules of thumb with little empirtal support. An empirical study that can offer

the scientific foundation on which to base such decisions is desirable. The results of this study should

provide guidelines to help researchers decide the appropriate procedures to be used.
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REVIEW OF THE RELATED UTERATURE

Historical Review of the Problem

By employing a concomitant variable, researchers c..n control the nuisance variance, reduce the error,

increase the precision, and enhance the efficiency of an experimental design (Cochran & Cox, 1950;

Cochran & Cox, 1957; Federer & Schlottfeldt, 1954; Fisher, 1937; Fisher, 1973a; Fisher, 1973b; Kennedy

ana Bush 1985; Keppel, 1973; Keppel, 1991; Kirk, 1982; Undquist, 1953; Maxwell & Delaney, 1990; Myers,

1979). In the two classic books, The Desion of Experiments and Statistical Methods for Research Workers,

Fisher (1937; 1973a) developed the analysis of variance of block designs and the analysis of covariance.

He demonstrated that the precision of an experimental design could be improved by controlling a

concomitant variable using the two analysis techniques.

Undquist (1953) used the term, treatments-by-levels design, which consists of more than one subject

in a cell, to differentiate it from the randomized complete block design, which consists of only one subject

in a cell. The treatm nts-by-levels design is also called the treatments-by-blocks design (Kennedy & Bush

1985). Undquist recommended that the treatments-by-blocks design be used in preference to the analysis

of covariance because (1) the treatments-by-blocks design required much less restrictive assumptions than

the anaiysis of covariance, (2) the computational procedures were considerably simpler with the treatments-

by-blocks design, and (3) the use of treatments-by-blocks design permitted a study on the simple effects

Of the treatments at any given block.

Gourley (1953) compared the analysis of covariance with the randomized complete block design in

which blocks were formed by matching subjects on the concomitant variable. He recommended that the

analysis of covariance be used in preference to the matching block technique; this view was shared by

Greenberg (1953) in a similar study.

Federer (1955) favored the block design over the analysis of covariance. He offered the following rule

of thumb: "if the experimental variation cannot be controlled by stratification (blocking), then measure related

variates and use covariance' (p. 483-484). However, he also pointed out that "it may be more advantageous

to use covariance than to use stratifir:ation, since fewer degrees of freedom are usually required to control

the variation" (p. 484).

0
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Cox (1957) developed the Apparent Imprecision measure and used it to compare the analysis of

covariance with the randomized complete block design in which blocks were formed by ranking subjects

on the concomitant variable. He found that the randomized complete block design was somewhat better

than the analysis of covariance if the correlation coefficient was less than .6 while the analysis of covariance

became appreciably better than the randomized complete block design when the correlation coefficient was

.8 or more. He suggested that the analysis of covariance was preferable to the randomized complete block

design only if the correlation coefficient between the concomitant and the dependent variable was at least

.6.

The most rigorous research on this topic was conducted by Fe Idt (1958). He used Cox's Apparent

Imprecision measure to compare three experimental designs. The three experimental designs beim

compared were (1) stratification (blocking), (2) the analysis of covariance, and (3) the analysis of variance

of difference scores. Fe Idt found the analysis of variance of difference scores was the least precise

procedure; for p [correlation] < .4 block designs results in approximately equal or greater precision than

the analysis of covariance; for p .6 the advantage is in favor of the analysis of covariance; and for p <

.2 and small values of the number of subjects neither the analysis of covariance nor block designs yields

appreciably greater precision than the one-way analysis of variance. Fe Idt also provided a table for the

optimal number of blocks to be used if block designs were selected. He concluded that the optimal number

of blocks tended to be larger for (1) larger values of correlation coefficients, (2) larger numbers of subjects,

and (3) smaller numbers of treatments. This study should be considered the classic study comparing block

designs with the analysis of covariance; its findings have been most often quoted by textbooks in the area

of experimental designs (e.g., Cook & Campbell, 1979; Dayton, 1970; Kennedy and Bush, 1985; Keppel,

1991; Kirk, 1982; Myers, 1979). However, Feldt's concept of optimal blocking was not supported by

Chuang's (1978) study, which found that block designs would become more powerful as the number of

blocks increased and 'the power of BLOCKING even at its maximum was slightly smaller than that of

COVARIANCE" (p. 37).
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In a block design, subjects are usually grouped into blocks before the experiment according to the value

of the concomitant variable. However, there are times that the value of the concomitant variable is not

available before the experiment. When blocks are formed after the experiment, the block design is defined

as a post-hoc block design. Keppel (1973) gave the following advantages of post-noc block designs over

the analysis of covariance: (1) reduction in computational effort, (2) free from the stricter assumptions of the

analysis of covariance, and (3) possibility of testing the treatments-by-blocks interaction. However, he also

pointed out two disadvantages of post-hoc blocking: (1) the inability to calculate the within-groups mean

square when cells have fewer than 2 subjects, and (2) the inability to adjust the treatment means for

differences on the concomitant variable.

Post-hoc blocking is popular because the value of the concomitant variable can be unknown before the

experiment. Nevertheless, Myers (1979) pointed out the danger of abusing post-hoc block designs by

demonstrating that reordering scores within each treatment does not change the treatment means but

generally reduces the error variance, resulting in significant Fs which "merely reflect the reduction in error

variance due to blocking rather than any variability due to treatments" (p. 155). However, he did not

consider the loss of degrees of freedom with the block design.

Bonett (1982) compared post-hoc block designs with the analysis of covariance and offered the following

rule:

if the assumptions for each method can be satisfied and if the probability of a Type II error
is of concern, the analysis of covariance will be preferred when the form of the regression
equation is known but the magnitude of the correlation is known. Post-hoc blocking, on
the other hand, will be preferred when the magnitude of the correlation is known. (p. 38)

A study employing the Monte Cario method and using statistical power as the criterion variable to

compare block designs and the analysis of covariance was performed by Maxwell and Delaney (1984). Their

study was limited to two treatments. The procedures they compared were based on the following two

dimensions: (1) the method of assignment and (2) the method of data analysis. Each of the two dimensions

had three levels: the concomitant variable was (1) ignored, (2) categorized, and (3) continuous. This

resulted in nine procedures being compared. Maxwell and Delaney (1984) favored the analysis of

covariance over block designs. They argued that
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the recommendation of most experimental design texts to consider the correlation between
the dependent and concomitant variables in choosing the best technique for utilizing a
concomitant variable is incorrect. Instead, the two factors that should be considered are
whether scores on the concomitant variable are available for all subjects prior to assigning
any subjects to treatment conditions and whether the relationship of the dependent and
concomitant variables is linear. (p. 136)

They also illustrated that the Apparent Imprecision measure, which was used in the Cox (1957) and Feldt

(1958) studies, might provide a different perspective from statistical power, but, the Apparent Imprecision

measure and statistical power are not independent.

Summary

While some research favored block designs, others preferred the analysis of covariance. Based on the

historical review of the problem, it is summarized that "the relative merits of blocking and ANCOVA are more

complicated, because neither is uniformly superior to the other" (Mamell & Delaney, 1984, p. 136). It is

likely that different procedures may be preferable to the others depending on the sets of experimental

conditions. One consequence of applying block designs and the analysis of covariance, which has been

often neglected in early research but frequertly stressed in recent research, is the decrease of the probability

of the Type II error, i.e., the increase in statistical power.

Based on the review of the related literature, it is suggested that future research should examine the

problem based on three dimensions: (1) how subjects are assigned, (2) how data are analyzed, ard (3) the

distributions of and the relationship between the concomitant and the dependent variables (i.e., considering

the assumptions of block designs and the analysis of covariance). The experimental conditions should

include three factors: (1) the number of treatments, (2) the number of subjects per treatment, and (3) the

magnitude of the relationship between the concomitant and the dependent variables. The criterion variables

on which to base the comparison should be the statistical power, the Type I error (a), and the Apparent

Imprecision measure.

Justification of the Study

This section provides the rationale for selecting statistical power as the criterion variable and using

computer generated data to simulate the experiment.
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Statistical Power as the Criterion Variable

The expressions; 'reduce error, Increase precision', 'enhance efficiency', and "maximize statistical

power:* have frequently been used interchangeably to describe the objective of employing a concomitant

variable in block designs and the analysis of variance (e.g., Bonen, 1982; Kennedy & Bush, 1985; Maxwell

& Delaney, 1984). Among these expressions, the term 'statistical power is the most unambiguously

understood one and is operationally defined in most statistical texts.

The neglect of statisticai power in research, textbooks, and curricula has been brought to the attention

of the research community. As Cohen (1962; 1977; 1988; 1992) has stressed, one of the most pervasive

threats to the validity of the statistical conclusions reached by behavioral research is low statistical power.

The investigation of statistical power in experiment designs has gained more and more popularity (Chase

& Tucker, 1976; Sedlmeier & Gigerenzer, 1989).

Computer Simulation

This is an empirical study using the Monte Carlo method to simulate the experiment The Monte Cario

method has been used effectively in examining many properties of statistics (Harwell, Rubinstein, Hayes,

& Olds, 1992; Shapiro, Wilk, & Chen, 1968; Wilcox, Char lin, & Thompson, 1986). Computer simulations have

many advantages. "We can often simulate situations more readily on the computer than perform the

corresponding experiments in real life"; 'one can also easily vary parameters in computer experiments"; and

"furthermore, the simulations tend to be very flexible in that a whole multitude of differing models can be

simulated with relative ease with essentially the same computer code" (Jain, 1992, p. 2). Therefore, using

a high speed computer to calculate statistical power based on empirical sampling is the most direct and

effective way to answer the research questions of this study.

PROCEDURES

This study compared five analysis procedures under 48 sets of experimental conditions using empirical

power as the criterion (dependent) variable. The five analysis procedures were the one-way analysis of

variance; two-block, four-block, and eight-block block designs; and the analysis of covariar:ce. The 4.8 sets

of experimental conditions were the combinations of four levels of the number of treatments (T; 2, 3, 4, 5),
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three levels of the number of subjects per treatment (N; 8, 40, 72), and four levels of the correlation

coefficient between the concomitant and the dependent variable (C; .00. .28, .56, .84). For each

experimental condition, 1,000 sets of data were generated by the computer. Each set of data was analyzed

by all five analysis procedures with the significance level (a) set at .05. The proportion of significant

analyses was the empirical power; for example, if 600 out of the 1,000 analyses were significant, the

empirical power would be .6. Each resulting empirical power was entered as one observation in each cell.

The procedure to generate and analyze the 1,000 sets of data was repeated two more times for each of the

48 experimental conditions. This resulted in a repeated measure four-way factorial design with three

observations (i.e,. three empirical powers) in each of the 240 (5 X 48) cells.

Calculation of the Effect Size

Statistical power is determined by three major factors; (1) the significance level, (2) the sample size, and

(3) the effect size (Dayton, Schafer, & Rogers 1973; Hinkle, Wiersma, & Jurs, 1988; Upsey, 1990; Sawyer

& Ball, 1981). Statistical power increases as the significance level, the sample size, and the effect size

increases. In order to make the comparison of the frve analysis procedures more meaningful, the one-way

analysis of variance was treated as the control group by setting its power at .50. This also would allow the

powers of the other procedures to increase or decrease as a function of the conditions. Therefore, the effect

sizes which would achieve a .50 power for the one-way analysis of variance under given experimental

:onditions needed to be calculated before the experiment. Calculation of effect sizes was based on tables

and formulae in Cohen's (1988) book. The effect size index is defined as

where a. is the population standard deviation and

a =m

where m, is the population mean of the ith treatment, m is the grand population mean, and k is the number

of treatments. The effect size index was calculated by the following formula:
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f
\In.05

400 (n-1)

where n is the number of subjects per treatment, and n is the required number of subjects per treatment

to achieve a desired power when f is equal to .05. The value of Ns can be obtained from Cohen's tables

(p. 381-389). For example, for three treatments with a = .05, the table shows that n is 662. If the number

of subjects per treatment is 8, then

f=\I 662 -0.4862392.
4 00 ( 8 -1)

When the means are equally spaced, the distance between the largest and the smallest mean can be

calculated by the following formula:

In this case,

d=2.f 3 ( k-1)
\I k+1

d=2 (0.4862392) .\1 3(3-1) -1.1910379 .
3 +1

In order to equally space the means, this number should be divided by two:

1 . 1910379 -0.5955189
2

Thus, to achieve a .5 statistical poWer for one-way analysis of variance when a =.05, n = 8, and k = 3, the

population mean of the first treatment should be set at m the second at m, + 0.5955, and the third at m,

+ 1.1910. Since the results of the analyses would be the same for any value of m,, the population mean

of the first treatment was always set at 0 in this experiment. The following is the table of the calculated

effect sizes to achieve a statistical power of .50 for the one-way analyses of variance under given

experimental conditions.

1_
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Table 1

Calculated Effect Size

Effect sizes for N=8 Effect sizes for 4=40 Effect sizes for N=72

1=2 1.0481 0.4440 0.3291

1=3 0.5955, 1.1910 0.2523, 0.5046 0.1870, 0.3740

1=4 0.4060, 0.8121, 1.2181 0.1720, 0.3440, 0.5161 0.1275, 0.2550, 0.3825

1=5 0.3030, 0.6059, 0.9089, 1.2118 0.1284, 0.2567, 0.3851, 0.5134 0.0951, 0.1903, 0.2854. 0.3805 I

:s..eneration and Analyses of the Data

The generation and the analyses of the data were accomplished using a computer simulation system

running on an IBM 3090/400E mainframe computer. Bivariate correlated data were generated using the SAS

commands 7rovided by Clark and Woodward (1992). These commands generated random data from a

bivariate (the concomitant and the dependent variables) normal distribution with means of 0, variances of

1, and a user-specified correlation coefficient. Random samples were generated separately for each

treatment. Only the means of the dependent variable were transformed based on the calculated effect sizes

in Table 1, while the other parameters remained unchanged. Data in each treatment were grouped into 2,

4, and 8 blocks by their ranks on the concomitant variable. For example, to group 40 subjects into 4 blocks,

the top 10 ranked subjects would be in the first block, the 11-20 ranked subjects would be in the second

block, the 21-30 ranked subjects would be in the third block, and the 31-40 ranked subjects would be in the

fourth block..

The computer simulation system included one executable file and two SAS programs (International

Business Machines, 1988a; International Business Machines, 1988b; SAS Institute Inc., 1990a; SAS Institute

Inc., 1990b). For each of the 48 experimental 'conditions, the executable file ran the first SAS program 1,000

times, then ran the second SAS program. The computer code for the condition of the number of treatments

(T) equal to 5, the number of subjects per treatment (N) equal to 72, and the correlation coefficient (C) equal

to .84 are listed in Appendix A. The first SAS program generated a set of data, analyzed that set of data

with the five analysis procedures being compared, and output the results of the analyses to a data file. After

the first SAS program ran 1,000 times, the data file contained 1,000 records of the results of the analyses.
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The second SAS program calculated the empirical power based on the 1,000 records. In order to obtain

three observations per cell, the executable file ran three times for each of the 48 experimental conditions.

Totally, there were 144,000 (1,000 X 3 X 48) sets of data generated and 720,000 (5 X 144,000) analyses

conducted.

A seed must be provided to generate random data using SAS random functions. The values of seeds

can be any integer ranging from 1 to 23' - 2 (i.e., 2,147,483,646). Users can let the computer clock set an

initial seed by specifying a value of 0. Using the computer clock to generate random data was tested and

found to have three problems: (1) The computer clock may not increment enough to generate different data;

(2) The computer clock may generate repeated or patterned data; and (3) the program may not be executed

because the computer clock generates invalid seeds. Therefore, positive seeds were used instead of the

computer clock. Using positive seeds also makes the experiment replicable. In order to systematically and

representatively employ the seeds, the minimum seed value, 1, was useJ as the first initial seed; it was

incremented by 2,147,483 for each run of the first SAS program, and by 14,913 for each run of the

executable file. The two incremented values were obtained by dMding the maximum seed value by 1,000

and 144,000. Thus, all seeds were equally spaced in the range between the minimum and maximum seed

values. The initial seeds used for each executable file are listed in Appendix B.

Hypotheses

This study tested the following null hypotheses using empirical power as the dependent variable. If a

null hypothesis was rejected, its follow-ups were conducted, and the null hypotheses following it was

ignored.

HO There will be no significant differences at the .05 level for the four-way interaction.
HO,: There will be no significant differences at the .05 level for the three-way interaction.
HC),.. There will be no significant differences at the .05 level for the two-way interaction.
HO,: There will be no significant differences at the .05 level for the main effect.

RESULTS

The resulting power values are listed in Appendb< C. The raw data were analyzed to test the null

hypotheses. The results of the analyses are summarized in Table 2.
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Table 2

ANOVA Summary

Tests of hypotheses using S(T*N*C) as the error term Tests of hypotheses using P*S(T*N*C) as the error term

Source OF SS Mean Square F Value Pr > F Source OF SS Mean Square F Value Pr > F

T 3 0.167672 0.05589083 116.31 0.0001 a 4 2.226688 0.55667191 12117.48 0.0001

N 2 0.050754 0.02537705 52.81 0.0001 T*P 12 0.073263 0.00610521 132.90 0.0001

C 3 8.853233 2.95107773 6141.08 0.0001 N*P 8 0.026325 0.00329068 71.63 0.0001

T*N 6 0.010605 0.00176756 3.68 0.0025 C*P 12 2.820703 0.23505859 5116.69 0.0001

T*C 9 0.103833 0.01153697 24.01 0.0001 PN*P 24 0.005493 0.00022889 4.98 0.0001

N*C 6 0.002530 0.00042162 0.88 0.5146 T*C*P . 36 0.051654 0.00143483 31.23 0.0001

T*9*C 18 0.004716 0.00026198 0.55 0.9285 N*C*P 24 0.004126 0.00017191 3.74 0.0001

S(T*4*C) 96 0.046133 0.00048055 T*N*C*P 72 0.002742 0.00003808 0.33 0.8336
P*S(T*N*C) 384 0.017641 0.00004594

Total 719 14.468110

Note. T: Number cf Treatments, N: Number of Subjects per Treatment, C: Correlation Coefficient, P: Procedure,
S: Data Set.

The four-way interaction (T*N*C*P) was not significant while the three-way interactions of T*N*P, T*C*P,

and N*C*P were significant. The cell means for the significant three-way interactions are listed in Tables

3, 4, and 5 respectively. Simple simple effects were tested at the significance level of .01. Non-significant

simple simple effects are indicated by "NS" in the last cells of the corresponding rows and columns. Tukey's

Honest Significant Difference (HSD) values are provided in the table notes for multiple comparisons. The

cell means for the other combinations are listed in Appendix D.

Table 3

Aeans for the Interaction of the Number of Treatments the Numbee. of Subjects per Treatment, and the Procedure

(T*N*0)

ANOVA TWO-BLOCK FOUR-BLOCK EIGHT-BLOCK ANCOVA

12

408 .498 .561 .580 .546 .628

440 .500 .575 .604 .613 .663

472 .506 .577 .606 .615 .663

13

408 .497 .583 .606 .599 .646

440 .501 .593 .627 .639 .666

472 .502 .593 .628 .539 .666

14

408 .501 .601 .633 .630 .653

440 .502 .609 .645 .657 .668

477 .501 .613 .650 .663 .674

TS

408 .503 .615 .649 .648 .666

440 .504 .626 .663 .677 .674

472 .498 NS .620 .656 .668 671

Note. P@T*N = .008, T*N@F, =.015, NS: Non-significant.

rq rnin AVAILABII
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Table 4

means for the Interaction of !he Number of Treatments, the Corretation Coeffic'ent. and the Procedure (T*C*P)

ANOVA TWO.BLOCK FOUR-BLOCK EIGHT-BLOCK ANCOVA

12

COO .504 .502 .498 .481 .490

C28 .502 .518 .523 .511 .523

C56. .496 .576 .605 .601 .645

C84 .503 .689 .759 .774 .947

T3

COO .505 .505 .501 .495 .496

C28 .497 .519 .525 .522 .528

C56 .502 .601 .636 1 .643 .653

C84 .496 .735 .821 .844 .960

14

COO .503 .503 .504 .496 .498 NS

C28 .496 .527 .535 .534 .526

C56 .498 .623 .663 .676 .677

C84 .508 .778 .868 .894 .967

15

COO .505 .503 .504 .499 .497 NS

C28 .501 .534 .544 .545 .526

C56 .507 .640 .686 .699 .683

C84 .494 NS .804 .890 .916 .975

Note. HSD: PaT*C=.009, T*C2P=.019, NS: Non-significant.

Table 5

Means for the Interaction of the Number of Subiects er Treatment the Correlation Coefficient and the
Procedure (N*C*P)

ANOVA No-nocK FOUR-BLOCK EIGHT-BLOCK ANCOVA

408

COO .502 .499 .494 .469 .478

C28 .500 .521 .525 .506 .512

C56 .498 .602 .634 .624 .653

C84 .499 .739 .816 .824 .955

440

COO .505 .505 .505 .505 .503 NS

C28 .502 .527 .537 .541 .534

C56 .502 .614 .652 .667 .670

C84 .498 .759 .844 .874 .964

N72

COO .505 .506 .505 .504 .505 NS

C28 .495 .525 .534 .537 .530

C56 .502 .615 .657 .673 .670

C84 .503 NS .758 .844 .872 .968

Note. HSD: P@N*C=.008, 4*CTIP=.015, NS: Non-significant

BEST COPY AVAILABLE
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Comrarison of Analysis Procedures

When the correlation coefficient between the concomitant and dependent variables was equal to .00,

the one-way ANOVA was as powerful as or more powerful than blocking and covariance. The difference

was significant when the number of treatments and the number of subjects per treatment were small. As

the correlation coefficient increased, the power of employing a concomitant variable became more and more

significantfrom 50 to over 90 percent. With the correlation coefficient equal to .28, the optimal blocking

procedure was as powerful as or slightly more powerful than covariance. Covariance was favored when the

correlation was moderate or high. However, with moderate correlation, blocking could be as powerfui as

or slightly more powerful than covariance when the number of treatments and the number of subjects per

treatment were large.

Comparison of Conditions

The ranks of the power values of the 4-8 sets of conditions for all and each of the analysis procedures

are listed in Appendix E. The pattern of the ranks showed that the three blocking procedures and the

ANCOVA became more powerful as (1) the correlation coefficient, (2) the number of treatments, and (3) the

number of subjects per treatment increased. Among the three factors, the correlation coefficient was

dominant. The ranks for the one-way ANOVA showed a random pattern with all power values being

approximately .50, which provided evidence that the power of the one-way ANOVA had been successfully

controlled.

Optimal Number of Blocks

The results did not provide the specific optimal number of blocks to be used under each experimental

condition because the experiment did not include all possible numbers of blocks. The results did indicate

that the optimal number of blocks increased as the correlation coefficient, the number of subjects per

treatment, and the number of treatments increased.

SUMMARY

Different procedures should be used depending on the set of experimental conditions. The correlation

coefficient between the concomitant and the dependent variable was the critical factor that should influence
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the choice. The one-way ANOVA was the best choice when the correlation was zero, block designs were

preferred when the correlation was low, and the analysis of covariance achieved the highest power when

the correlation was high. With moderate correlation, block designs should be selected only when the

number of treatments and the number of subjects per treatment were large; otherwise, the analysis of

covariance should be used. Block designs and the analysis of covariance became more powerful and the

optimal number of blocks for a block design increased as the correlation coefficient, the number of

treatments, and the number of subjects per treatment increased.

Discussion

The levels of the experimental conditions were chosen to be equally spaced and to be representative

of real world situations. The four levels of the number of treatments represented the most commonly used

numbers of treatments; the three levels of the number of subjects per treatment represented small, medium,

and large sample sizes; and the four levels of the correlation coefficient represented zero, low, moderate,

and high correlations. The results of the study provided a guide to help researchers decide the appropriate

procedures to be used under different experimental conditions.

This study had the following characteristics:

1. It controlled the power of the one-way ANOVA to prevent ceiling and floor effects; this also made the

comparisons more meaningful as the one-way ANOVA was treated as the control group.

2. Unlike most of the Monte Carlo studies that had only one observation in each cell and provided only

descriptive statistics, this study had multiple observations in each cell and provided inferential in addition

to descriptive results.

3. Basing the sample size on the number of subjects per treatment imead of the total number of subjects

made the iMerpretatfon of the results more meaningful.

4. The computer simulation system consisted only of SAS programs, which were much shorter and more

understandable than equivalent programs written in Fortran or other programming languages.

One limitation of this study was that it did not include all possible blocking procedures. Since the results

showed that the optimal number of blocks increased as the sample size increased, block designs could
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become more powerful if other blocking procedures with more blocks were used. The primary disadvantage

of using SAS rather than a programming language for Monte Carlo simulation is that SAS uses more

computer CPU time. However, this disadvantage can be overcome by using a high speed computer such

as the IBM 3090/400E computer used in this study.

Recommendations for Future IResearch

Several pilot studies which examined the parameters and distributions of the mean,variance, and

correlation coefficient were conducted before the experiment, and the resulting sampling distributions of the

statistics were checked after this experiment. The inspection found that the computer simulation system

generated data that met predetermined specification. Furthermore, before the experiment, the power of the

one-way ANOVA was controlled at .50. The resulting empirical powers of the one-way ANOVA had a mean

of .50 and a variance of .0001; also the mean squares for S(T*N*C) and P*S(T*N*C) were .00048055 and

.00004594 respectively and the pooled mean square error was .00013286all supporting the precision of the

data generation procedures. Since the computer simulation system is able to generate accurate data and

examine the problems effectively, it is recommended that future research adapt the system to examine

related problems.

This study does not include the treatments-by-blocks interaction in the block designs since the

interaction does not exist in the population. Future studies can examine the effects of including the

interaction using essentially the same computer codes, or, by varying the parameters of the population,

examine the effects of including and excluding the interaction when the interaction exists in the population.

The optimal number of blocks for a block design could be investigated by including other feasible blocking

schemes such as 5-, 10-, 20-, and 40-block block designs for the condition of 40 subjects per treatment

The areatest contribution of this study may not be the specific results reported here, but the potential

for examining many other situations. The computer simulation system developed for this study could be

modified easily for a multitude of other studies. For example, it could be used to investigate other criteria

such as Type I errors, examine other levels of the experimental conditions, or test other blocking methods

in addition to the post-hoc blocking used in this study.

ia

...v.,
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Appendix A

COMPUTER CODES

Executable File
/* */

ADDRESS COMMAND
"ERASE PVALUE DATA A"
NUMERIC DIGITS 10
TIME = 1
DO WHILE TIME < 1001
SEED = 2132560 + (TIME -1) * 2147483
"EXECIO 1 DISKW" NEWSEED DATA A
"(STRING" SEED
"EXEC SAS T57284"
"ERASE NEWSEED DATA A"
TIME=TIME+1
END
"EXEC SAS T57284P"

First SAS Program (T57284 SAS A)
CMS FILEDEF INDATA DISK NEWSEED DATA
A;
CMS FILEDEF PVALUE DISK PVALUE DATA A
(LRECL 210 BLKSIZE 210 RECFM FBS;
CMS FILEDEF SASLIST DISK T57284
LISTING A;
DATA BIVNORM (DROP=I);

INFILE INDATA;
INPUT SEED;

DO I=1 TO 72;
GROUP=1;
X=RANNOR(SEED);

Y=.84*X+SQRT(1-.84**2)*RANNOR(SEED);
OUTPUT;

END;
DO I=1 TO 72;

GROUP=2;
X=RANNOR(SEED);

Y=.84*X+SQRT(1-.84**2)*RANNOR(SEED);
Y=0.0951+Y;

OUTPUT;
END;
DO I=1 TO 72;

GROUP=3;
X=RANNOR(SEED);

Y=.84*X+SQRT(1-.84**2)*RANNOR(5EED);
Y=0.1903+Y;
OUTPUT;

END;
DO I=1 TO 72;

GROUP=4;
X=RANNOR(SEED);

Y=.84*X+SQRT(1-.84**2)*RANNOR(SEED);
Y=0.2854+Y;
OUTPUT;

END;
DO I=1 TO 72;

GROUP=5;
X=RANNOR(SEED);

Y=.84*X+SQRT(1-.84**2)*RANNOR(SEED);
Y=0.3805+Y;
OUTPUT;

END;
PROC SORT;

BY GROUP X;
DATA BIVNORM;

SET BIVNORM;
BN=MOD(N_,72); IF BN=0 THEN
BN=72;
IF BN<=36 THEN 82=1; ELSE B2=2;
IF BN<=18 THEN B4=1; ELSE IF
BN<=36 THEN 84=2;
ELSE IF BN<r-54 THEN 84=3; ELSE
84=4;
IF BN<=9 THEN B8=1; ELSE IF BN<=18
THEN 38=2;



ELSE IF BN<=27 THEN 88=3; ELSE IF
BN<=36 THEN 38=4;
ELSE IF BN<=45 THEN 38=5; ELSE IF
3N<=54 THEN 88=6;
ELSE IF BN<=63 THEN 88=7; ELSE

B8=8;
PROC PRINT;
PROC CORR DATA=BIVNORM;

VAR X Y;
BY GROUP;

PROC GLM;
CLASS GROUP;
MODEL Y=GROUP/SS3;

PROC GLM;
CLASS GROUP 32;
MODEL Y=GROUP 32/5S3;

PROC GLM;
CLASS GROUP 34;
MODEL Y=GROUP 34/SS3;

PROC GLM;
CLASS GROUP 38;
MODEL Y=GROUP 38/SS3;

PROC GLM;
CLASS GROUP;
MODEL Y=GROUP X/SS3;

DATA;
INFILE SASLIST;
INPUT WORD] $ WORD2 $ @;
FILE PVALUE MOD;
IF WORD1 = 'X' AND WORD2 ='72'
THEN DO;

INPUT MEAN STDDEV;
PUT MEAN 6.4 STDDEV 6.4 @;
INPUT Y $ N MEAN STDDEV;
PUT MEAN 6.4 STDDEV 6.4 @;
END;

ELSE IF WORD1="X" AND WORD2 =
'1.00000' THEN DO;
INPUT CORR;
PUT CORR 6.4 @;
END;

ELSE IF WORD1="GROUP" AND WORD2 =
'4' THEN DO;
INPUT SS MS F PR;
PUT PR 6.4 @;
INPUT BLOCK $ DF SS MS F PR;
PUT PR 6.4 @;
END;

Second SAS Proaram (T57284P SAS A)

CMS FILEDEF INDATA
A;
DATA PVALUE;
INFILE INDATA;
INPUT (G1XMEAN

G1CORR
G2XMEAN
G2CORR
G3XMEAN
G3CORR
04XMEAN
04CORR

DISK PVALUE DATA

G1XSD

G2XSD

G3XSD

G4XSD

G1YMEAN

G2YMEAN

G3(MEAN

G4YMEAN

G1YSD

G2YSD

G3YSD

G4YSD
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G5XMEAN G5XSO GSYMEAN GSYSD
G5CORR
GROUP1B BLOCK1B GROUP23
BLOCK2B GROUP4B BLOCK4B
GROUP8B BLOCK8B GROUPANC

BLOCKANC) (35* 6.4);
TOTAL=0;
G1BSG=0;
B1BSG=0;
G2BSG=0;
B2BSG=0;
G4BSG=0;
B4BSG=0;
G8BSG=0;
B8BSG=0;
GANCSG=0;
BANCSG=0;
TOTAL=1;
IF GROUP13 <= 0.05
IF BLOCK1B <= 0.05
IF GROUP2B <= 0.05
IF BLOCK2B <= 0.05
IF GROUP4B <= 0.05
IF BLOCK4B <= 0.05
IF GROUP8B <= 0.05
IF BLOCK8B <= 0.05
IF GROUPANC <=

GANCSG=1;
IF BLOCKANC <= 0.05 THEN

BANCSG=1;
PROC FREQ;

TABLE G1BSG BANCSG;
PROC SUMMARY DATA=PVALUE;

VAR G1XMEAN BANCSG;
OUTPUT OUT = DESCRIPT;

PROC PRINT DATA=DESCRIPT;
PROC UNIVARIATE DATA=PVALUE PLOT
NORMAL;

VAR G1XMEAN BLOCKANC;

THEN G1BSG=1;
THEN 31BSG=1;
THEN G2BSG=1;
THEN 323SG=1;
THEN G4BSG=1;
THEN B4BSG=1;
THEN G8BSG=1;
THEN B8BSG=1;

0.05 THEN
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Acpendix B

INITIAL SEEDS

SEED CONDITION' SEED CONDIT:0W SEED CONDITION"

1 T2NO8COODS1 715825 T2NO8COODS2 1431649 T2NO8COODS3
14914 T2N08C28DS4 730738 T2N08C28DS5 1446562 T2N08C28DS6
29827 T2N08C56DS7 745651 T2NO8C56DS8 1461475 T2N08C56DS9
4/'40 T2NO8C84DS10 760564 72N08C84DS11 1476388 T2N08C84DS12
59653 'r2N40C00DS13 775477 T2N4OCOODS14 1491301 T2N4OCOODS15
74566 r2N40C28DS16 790390 T2N40C28DS17 1506214 T2N40C28DS18
89479 T2N40C56DS19 805303 T2N40C56DS20 1521127 T2N40C56DS21
104392 T2N40C84DS22 820216 T2N40C34DS23 1536040 T2N40C84DS24
119305 T2N72COODS25 835129 T2N72C00DS26 1550953 T2N72000DS27
134218 T2N72C28DS28 850042 T2N72C28DS29 1565866 T2N72C28DS30
149131 T2N72C56DS31 864955 T2N72C56DS32 1580779 T2N72C56DS33
164044 T2N72C84DS34 879868 T2N72C84DS35 1595692 T2N72C84DS36
178957 T3NO8COODS37 894781 T3NO8COODS38 1610605 T3N08C00D839
193870 T3N08C28DS40 909694 T3N08C28DS41 1625518 T3N08C28D842
208783 T3N08C56DS43 924607 T3NO8C56DS44 1640431 T3N08C56DS45
223696 T3N08C84DS46 939520 T3N08C84D547 1655344 T3N08C84DS48
238609 T3N4OCOODS49 954433 T3N4OCOODS50 1670257 T3N4OCOODS51
253522 T3N40C28DS52 969346 T3N40C28DS53 1685170 T3N40C28DS54
268435 T3N40C56DS55 984259 T3N40C56D556 1700083 T3N40C56DS57
283348 T3N40C84DS58 999172 T3N40C84DS59 1714996 T3N40C84DS60
298261 T3N72COODS61 1014085 T3N72C00DS62 1729909 T3N72C00DS63
313174 T3N72C28DS64 1028998 T3N72C28DS65 1744822 T3N72C28DS66
328087 T3N72C56DS67 1043911 T3N72C56DS68 1759735 T3N72C56DS69
343000 T3N72C84DS70 1058824 T3N72C84DS71 1774648 T3N72C84D572
357913 T4NO8COODS73 1073737 T4NO8C000S74 1789561 T4NO8C000S75
372826 T4N08C28DS76 1088650 T4N08C28DS77 1804474 T4N08C28DS78
387739 T4N08C56DS79 1103563 T4N08C56DS80 1819387 T4N08C56DS81
402652 T4N08C84DS82 1118476 T4N08C84DS83 1834300 T4N08C84D584
417565 T4N4OCOODS85 1133389 T4N40000DS86 1849213 T4N4OCOODS87
432478 '11140C28DS88 1148302 T4N40C28DS89 1864126 T4N40C28DS90
447391 T4N40C56D591 1163215 T4N4OCS6DS92 1879039 T4N40C56DS93
462304 T4N40C84DS94 1178128 T4N40C84DS95 1893952 T4N40C84D396
477217 T4N72C00D597 1193041 T4N72C00DS98 1908865 T4N72C00DS99
492130 T4N72C28DS100 1207954 T4N72C28D8101 1923778 T4N72C28DS102
507043 T4N72C56DS103 1222867 T4N72C56DS104 1938691 T4N72C56DS105
521956 T4N72C81DS106 1237780 T4N72C84DS107 1953604 T4N72C84D5108
536869 T5NO8COODS109 1252693 T5NO8COODS110 1968517 T5NO8COODS111
551782 T5N08C2805112 1267606 T5NO8C28DS113 1983430 T5N08C28DS114
566695 T5N08C56D5115 1282519 T5N08C56DS116 1998343 T5NO8C56DS117
581608 T5NO8C84DS118 1297432 T5NO8C84DS119 2013256 T5NO8C84DS120
596521 T5N40C00DS121 1312345 T5N4OCOODS122 2028169 T5N4OCOODS123
611434 T5N40C28DS124 1327258 T5N40C28DS125 2043082 T5N40C28DS126
626347 T5N40C56DS127 1342171 T5N40C56DS128 2057995 T5N40C56D5129
641260 T5N40C84DS130 1357084 T5N40C84DS131 2072908 T5N40C84DS132
656173 T5N72COODS133 1371997 T5N72COODS134 2087821 T5N72C00DS135
671086 T5N72C28DS136 1386910 T5N72C28DS137 2102734 T5N72C28DS138
685999 T5N72C5605139 1401823 T5N72C56DS140 2117647 T5N72C56D5141
700912 T5N72C84D5142 1416736 T5N72C34D5143 2132560 T5N72C8405144

* T: the number of treatments, N: the number of subjects per treatment,
C: the correlation coefficient, DS: the data set.
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AccenCiA

'..AYCuT OF THE DES:ON ANC RAW DATA

For Two Treatments :-2) ! ;or Three Treatment !T3)

N C 1 S i ANO 128 43 88 ICOV i S ANO 28 1 48 38 O.Ov

NO8 COO 031 .489 .483 .465
I
.436 .449 ! D537 1 .525 .521 1 .510 I .498 I .304

1

0S2 I
.505

I
.495 434 .428 I

.449 0s38 .489 .490 .466 .450 .465 1

033 .496
I
.495 .493 .427 .473 0539 .511 .313 .509 I

.496 ...86

C28 0s4 .505 f .505 .513 .469 .511 0540 .492 .511 .517
I
.497

I
.317

0S5 .521 .525 .533 .480 .502 0S41 .499 .519 .526 .517 .517

0S6 .438 .500 .486 .462 .439 0342 .487 .512 .505 .488
I
.503

C56 0S7 .497 .583 .602 .569 .532 0543 .499 .582 .605 .392 .634

058 .499 .562 .591 .557 .629 0544 .501 .589 .617
I
.609

I
.633

059 .471 .551 .574 .537 .607 I 0545 .495 .603 .630 .620 I .636
1

C84 0S10 .511 .679 .751 .741 .935 DS46 .497 .770 .305
I
.320 I .946

0511 .485 .659 i .7',1 .700 .941 I DS47 .483 .715 .787 .302
1 .955

0512 .507 .701 .753 .750 .925 I S48 .490 1 .724 1 .798 I .804 I .954

N40 COO DS13
I
.500 .499 .495 .498 .503 I 0549 .517 .515 .515 .511

I
.513 1

0314 1
.508 .510 .512 .506 .513 OS50 .499 .494 .495 .496 .491

OS15 I .500 .500 .503
I
.502 .503 0S51 .494 .49..; .493 .492 .491

C28 0316 I .502 .522 .530 .533 .536 0S52 .499 .512 .524 .522 .529

0517 .497 .514 .519 .529 .532 0S53 .509 .530 .537 .545 .535

OS18 .503 .528 .537 .534 .532 0354 .517 .535 .538 .543 .557

C56 0319 I .488 .573 .602 .611 .651 0355 .500 .586 .622 .635 .646

0S20 .514 .588 .617 .628 .664 DS56 .512 .609 .648 .662 .687

DS21 .496 .588 .621 .628 .655 0557 .488 .610 .654 .672 .668

C84 0S22 .514 .700 .775 .795 .954 0S58 .467 .747 .833 .879 .958

0323 .487 .686 .753 .790 .950
j
0359 .510 .744 .829 .852 .957

0S24 .493 .694 .780 '.806 .959 0S60 .482 .742 .831 .362 .965

N72 COO 0325 .524 .522 .521 .520 .521 0S61 .513 .511 .513 .514 .513

0S26 .496 .495 .496 .496 .491 I 0362 .500 .505 .503 .501 .503

0327 .518 .517 .515 .512 .510
1
0S63 .500 .500 .502 .498 .501

C28 0528 .499 .520 .524 .527 .548 0564 .491 .512 .521 .523 .531

0329 .494 .511 .526 .523 .525 I 0S65 .483 .513 .525 .531 .530

0S30 .510 .534 .538 .543 .532 I 0S66 .497 .523 .529 .534 .329 1

C56 0331 .501 .573 .610 .622 .655 0567 .522 .630 .665 .680 .656 I

0332 I .482 .563 .501 1 .612 .652
1
0368 .504 .611 .645 .665 1 .656

0S33 I .513 .602 .630 .647 .657 0s69

0570

.498 .590

.492 [.737

.635

.822

.651

.847

.663

.968C34 0S34
I .520 I .711 .781 .806 .952

0535 .491 I .682 .757 .785 .962 I 0S71 .516 .758 .840 .863 .968

0536 .519 .590 .768 .792 .948 0572 .504 .731 .840 .864 .968

Note. T: the nuater of treatments, M: the numoer of suojects oer treatment,
C: tne corretation coefficient, DS: the data set.

2 4



For Four Treatments '-4) For Five Treatments (T5)

)4 C s , ANC
1 23

1 'a
38 I coy s ANO 28 48 188 COV_______I

N08 COO 0S73 .502 .501 I .501 .476 I .489 OS109 .510
I
.500 .491 .478 .476

0S74 i .493 .492 I .»87 I
.477 .486 DS110 .506 .507 .507 .500 .493

0575 I ....97 .494 I .502
I
.479 .481 03111 .507 502 .508 .487 .490

C28 0S76 ; .481 .515
I
.516 I

.510 .525 I DS112 .496 .525 .536 .531 .513

D377 1 .510 .538 .547 1.527 .527 05113 .522 .548 .554 .548 .528

0S78 I .513 .534 .534 1.530 .502 I S114 .488 1.522 .530 .519 .513

C56 0579 i .503 .626 loss I .661 .559 03115 .514 .629 .667 .680 I .693

0380 1 .505 .619 I .562 I .671 .663 I 05116 .506 .639 I .682 .680 .696

0581 1 .476 .603 .637 .638 .676 S117 .509 .632 .685 .679 .679

C34

.

0382 ' .519 .768 I .353 .864 .964 0S118 .487 .796 .877 .892 .974

DS83 I .519 .758 I .350 .365 1 .968 . 03119 .499 .788 .872 .886 .968

0384 ; .492 .765 .355 .367 .961 03120 .496 .789 .875 .900 .969

N40 COO 0S85 . .498 .499 .502 .498 .492
I 0S121 .507 .508 .509 .511 .503

0386 .501 .501 .499 .496 .493 03122 .516 .515

0S87 .517 .520 .518 .518 .516 03123 .503 .504 .507 .509 .502

C23 0388 I .495 .521 .541 .545 .544 03124 .502 .543 .553 .559 .539

0389 I .497 .530 ma .542 .530 03125 .509 .537 .548 .556 .523

0390
I
.490 .519 .530 .533 .523 0S126 .500 .531 .547 .551 .534

C56 0S91 I .509 .620 .650 .668 .670 03127 .523 .649 .690 .713 .689

0S92 I
.503 .625 .669 .688 .673 03128 .690

0393
I
.493 .631 .667 .682 .674 03129 .501 .639 .680 .700

0S94 I .521 .805 .892 .917 .974 03130 .485 .815 .910

DS95 I .497 .769 .856 .891 .963 03131 .482 .797 .883 .917

0396 1.497 .772 .878 .907 .967 03132 .519 .831 .911 .941 .975

COO 0397 I .506 .508 .507 .510 .512 03133 .491 .490 .488 .487 .498

0398 .514 .517 .516 .514 .514 03134 .497 .497 .498 .494 .495

0399
I
.498 .499 .500 .500 .498 0S135 .505 .506 .506 .503 .507

028 03100 I .511 .543 .550 .551 .542 0S136 .478 .517 .533 .534 .513

03101
I
.489 .527 .533 .536 .529 0S137 .501 .535 .543 .546 .531

DS102 I
.478 .518 .529 I .530 .510 I 05138 .515 .544 .556 .562 .539

C56 03103 I .510 .638 .692 .702 .700 I 03139 .494 .621 . .688 .669

DS104 I .501 .626 .666 .684 .696 0S140 .500

DS105 I
.484 .615 .673 .694 .680 03141 .518 .647 .701 .713

C84 0S106
I
.494 .792 .871 .911 .960 0S142 .494 .805 .894 .919 .982

0S107 I .521 .794 .387 .919 .974 03143 .487 .808 .900 .926 .980

03108 I .508 .779 .374 I .907 I .972 03144 .496 .307 I .891 .925 .982 I

Note. T: the numiser of treatments, N: the numper of suojec:s per treatment,

C: the correlat'on coefficient, OS: the data set.
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Aopenclx )

Mean 7aoles

zor Two Treatments (72) For Three Treatments (73)

4 C ANO 23 43 313 Z0V ANO 23 8 38 COV

408 COO .497 .491 .481 .430 .457 .508 .508 .495 .481 .485

C28 .505 .310 .511 .470 .501 .493 .514 .516 .501 .512

C56 .490 .565 .589 .554 .623 .498 .591 .617 .507 .534

C34 .501 .630 .740 .730 .934 1 .490 .720 .797 .309 .952

440 COO
j

.503 .503 .503 .502 .506 f .503 .501 .501 .500 .498

C28 .501 .521 .529 .532 .533 .508 .526 .533 .537 .540

C56 .499 .583 .613 .622 .657 .500 .602 .641 .656 .667

CS4 .498 .593 .769 .797 .954 1 .493 .744 .331 .364 .960

472 COO .513 .511 .511 .509 .507 .504 .505 .506 .504 .506

C28 .501 .322 .529 .531 .535 I .490 .516 .525 .529 .530

C56 .499 .579 .614 .627 .655 I .508 .610 .648 .665 .658

034 .510 .694 .769 .794 .954 1 .504 .742 .834 .858 .968

For Four Treatments (14) 1 For Five Treatments (15)

908 COO .497 .496 .497 .477 .485 1 .508 .503 .502 .488 .486

028 .501 .529 .532 .522 .518 1 .502 .532 .540 .533 .518

C56 .495 .616 .651 .657 .666 1 .510 .633 .678 .680 .689

C84 .510 .764 .853 .865 .964 1 .494 .791 .875 .893 .970

440 COO .505 .507 .506 .504 .500 i .509 .509 .511 .513 .506

C28 .494 .523 .536 .540 .532 1 .504 .537 .549 .555 .532

C56 .502 .625 .662 .679 .672 1 .508 .645 .690 .710 .685

C84 .505 .732 .875 .905 .968 .495 .814 .901 .931 .973

472 COO .506 .508 .308 .308 .508 .498 .498 .497 .495 .500

C28 .493 .529 .537 .539 .527 1 .498 .532 .544 .547 .528

C56 .498 1 .626 .677 .693 .692
I

.504 .642 .690 .70 .675

084 .508 1 .788 .877 .912 .969 .492 .307 .395 .923 .981

4ore. T: the numer of treatments, 4: :Me nummer of suojects per treatoent,

C: the corretation coefficient.
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C7,0 1 C23 C56 C84

2 08 1 0.471 0.499 0.364 0.717

440 1 0.503 0.523 0.595 0.742

472 I 0.510 0.524 0.595 0.744

I '3 408 1 0.496 0.507 0.590 0.753

440 1 0.501 0.529 0.613 0.779

472 1 0.505 0.518 0.618 0.781

4 408 1 0.490 0.521 0.617 0.791

440 1 0.505 0.525 0.628 0.807

472 1 0.508 0.525 0.637 0.811

408 1 0.497 0.525 0.638 0.805

440 1 0.510 0.535 0.643 0.823

472 1 0.497 0.530 0.643 0.820

1
408 1 440 472

12 0.563 I 0.591

73 0.586 0.605

T4 0.605 1 0.516

0.593 1

0.606 1

0.620 1

0.616 0.629 0.623 I

COO C28 C56

72 0.495 0.515 0.585 0.735

13 0.500 0.518 0.607 0.771

74 0.501 0.524 0.627 0.803

TS 0.502 0.530 0.643 0.816

1 ANovA 23LOcx 4BLOCX 88LOCX ANCOY
_

12 0.501 0.571 0.596 0.592 0.651

'3 0.500 0.590 0.620 0.626 0.659

'4 10.501 0.608 0.643 0.650 0.667

15 10.502 0.620 0.656 0.665 0.670

1 COO I as
408 I 0.489

440 1 0.505 1 0.528

472 1 0.505 0.524

C56 1 C34

I 0-51' 0.602 0.766 1

10.621 0.788

0.623 10.789

24

ANOVA 1 23LOCK I 481.0cX I 88LOCX ANCOV

408 I 0.500 0.590 0.617 10.606 1 0.650

440 0.502

1

0.601 10.635 0.647 0.668

472 10.502 1 0.601 0.635 0.646 0.668

1 ANOVA 1 MOCK I 48L0CX MOCK I ANCOv

:JO I 0.504 0.503 I 0.501 0.493 I 0.495

c28 I 0.499 I 0.532 1 0.528 1 0.526

:56

._0..524

I 0.501 I 0,610 0.648 0.655 0.664

:34 i 0.500 I 0.752 0.835 0.357 I 0.962

"2 13 1 74 15

0.582 0.599 1 0.614 0.623 I

440 1472
11

0.593 0.610 1 0.610

COO C28 C56 .084

0.499 0.522 0.616 0.781 1

ANOVA

I 0.501

281.00K 48LOCK

0.597 I 0.629

881.0CX

0.633

ANCOV 1

0.662

4ote. T: the number of treatments, N: the number of subjects per treatment,
C: the cor-eiatIon coefficient.
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Acoer.cix S

RANKS OF 1NE 'ORTY-E17 EXPERIMENTAL CONDITIONS

All Proceaures

Condition Power

One-way ANOVA

Condition' Power

Ta0-0lOCK

Condition' Power

Four-block

Condition' Power

Eight-olock

Condition' Power

ANCOVA

Condition' Power

T2NO8C00 0.471 TZNO8C56 0.490 T2N08C00 0.491 T2NO8C00 0.481 T2NO8C00 0.430 T2NO8C00 0.457
T4NO8C00 0.490 T3N08C84 0.490 T4N08C00 0.496 T3108C00 0.495 12N08C28 0.470 73N08C00 0.485

13N08C00 0.496 -3N77C28 0.490 T5172C00 0.498 T4N08C00 0.497 14N08C00 0.477 T4N08C00 0.485

15N08C00 0.497 75N72C84 0.492 73N40000 0.501 T5N72C00 0.497 T3N08C00 0.481 75N08C00 0.486

T5N72C00 0.497 T3N08C28 0.493 T2N40000 0.503 T3N40000 0.501 T5NO8C00 0.488 T3N40000 0.498

12908C28 0.499 73N40084 0.493 T5N08C00 0.503 T5NO8C00 0.502 75N72000 0.495 14N40000 0.500

T3N40000 0.501 T4N72C28 0.493 13N72C00 0.505 12N40000 0.503 13N40000 0.500 T5N72C00 0.500

T2140CC0 0.503 74N40C28 0.494 T4N40000 0.507 T3N72C00 0.506 T3N08C28 0.501 T2N08C28 0.501

13N72C00 0.505 T5N0EC84 0.494 T3N08000 0.508 T4N40000 0.506 T2N40000 0.502 72N40000 0.506
T4N40000 0.505 14NO8C56 0.495 14N72C00 0,508 T4172C00 0.508 T3472C00 0.504 7397200 0.506
73908C28 0.507 75940084 0.495 T5440000 0.509 12N08C28 0.511 T4N40000 0.504 75N40000 0.506
T4N72C00 0.508 T2N08000 0.497 T2N08C28 0.510 12N72C00 0.511 T4N72C00 0.508 12N72C00 0.507
72N72C00 0.510 T4N08C00 0.497 12N72C00 0.511 T5N40000 0.511 72N72000 0.509 14N72C00 0.508

15N40000 0.510 T2N40084 6.498 7308C28 0.514 T3N08C28 0.516 T5N40000 0.513 73N08C28 0.512
T3N72C28 0.518 73N08C56 0.498 13N72C28 0.516 . 13972028 0.525 T4N08C28 0.522 14N080.28 0.518

T4N08C28 0.521 T'472C56 0.498 T2N40C28 0.521 12N40C28 0.529 13N72C28 0.529 15N08028 0.518

12N40C28 0.523 T5N72C00 0.498 12N72028 0.522 12N72028 0.529 12N72C28 0.531 1.4N72C28 0.527

12N72C28 0.524 15N72C28 0.498 14N40C28 0.523 T4N08C28 0.532 12N40023 0.532 15N72C28 0.528

14/440C28 0.525 12N400.56 0.499 13N40028 0.526 13N40C28 0.533 15N08028 0.533 13N72C28 0.530

14N72C28 0.525 12N72C56 0.499 14N08C28 0.529 T4440028 0.536 T3N40C28 0.537 14N40028 0.532

15N08028 0.525 T3140056 0.500 T4N72C28 0.529 T4N72C28 0.537 14N72C28 0.539 15N40028 0.532

13N40028 0.529 12N08C84 0.501 T5N08C28 0.532 15N08028 0.540 14N40C28 0.540 12N40028 0.533

15N72C28 0.530 12N40028 0.501 15972028 0.532 15N72028 0.344 15N72.028 0.547 12972028 0.535

15940C28 0.535 12972C28 0.501 15N40028 0.537 15N40028 0.549 T2408C56 0.554 13N40.028 0.540

12908C56 0.564 14N08028 0.501 12N08056 0.565 12N08056 0.589 T5440C28 0.555 12908056 0.623

13908056 0.590 14940056 0.502 12N72--' 0.579 12940056 0.613 13908056 0.607 73908056 0.634

12N40056 0.595 7508028 0.502 T2940LJo 0.583 12N72056 0.614 12N40056 0.622 12N72056 0.655

12N72056 0.595 12N40000 0.503 13908C56 0,591 13908C56 0.617 12972C56 0.627 12940056 0.657
131440056 0.613 13N40000 0.503 T3940056 0.602 13940056 0.641 T3N40056 0.656 13972056 0.658

14N08056 0.617 13972000 0.504 131472056 0.610 T31472C56 0.648 14908C56 0.657 141408056 0.666

13N72C55 0.618 13972084 0.504 T4908C56 0.616 14N08C56 0.651 13972C56 0.665 73940056 0.667

14940056 0.628 751440C28 0.504 74N40056 0.625 14440056 0.662 1494006 0.679 14940056 0.672

14972C56 0.637 15472C56 0.504 14N72056 0.626 14972056 0.677 75N08056 0.680 15972056 0.675

15N08C56 0.638 1290802E1 0.505 151408C56 0.633 151408C56 0.678 14972C56 0.693 15N40056 0.685

15N72056 0.643 14940000 0.505 15N72C56 0.642 15N40056 0.690 15972C56 0.706 15N08C56 0.689

15N40056 0.648 74440084 0.505 15N40056 0.645 15972056 0.690 15940056 0.710 14972C56 0.692

12N08084 0.717 14972000 0.506 12N08084 0.680 121408084 0.740 12908C84 0.730 12908084 0.934

12N40084 0.742 73908000 0.508 12940084 0.693 12940c84 0.769 12972084 0.794 1390804 0.952

7297204 0.744 13940028 0.508 12972084 0.694 12972084 0.769 12N40084 0.797 12N40084 0.954

131108034 0.753 73972056 0.508 13N08084 0.720 13N08C84 0.797 131408084 0.809 72N72084 0.954

13940034 0.179 14972084 0.508 13W72084 0.742 13N40084 0.831 131472084 0.858 13N40034 0.960

73N72084 0.781 75908C00 0.508 131440084 0.744 1397204 0.834 13940084 0.864 14N08C84 0.964
14908034 0.791 75940056 0.508 14N08C34 0.764 14N08084 0.853 14N08C84 0.865 13N72C84 0.968

15N08084 0.805 15940000 0.509 14N40084 0.782 14440084 0.875 T5908C84 0.893 14940C34 0.968

T'4440034 0.807 12N72084 0.510 14972084 0.788 15908C84 0.875 T4,140084 0.905 14972084 0.969

74N72C84 0.811 74N08C84 0.510 15N08C34 0.791 14977.084 0.877 1497204 0.912 15908084 0.970

15N72.034 0.820 75N08036 0.510 75972C34 0.807 15/172C84 0.895 15N72C84 0.923 15N40084 0.973

15940c34 0.823 72N72C00 0.513 15N10084 0.814 15N40084 0.901 15940084 0.931 75972034 0.981

1: the number of trea:ments. N: the number of subjects per treatment, C: the corre' .ion coefficlent.
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